Phenotypic correction of murine hemophilia A using an iPS cell-based therapy.
نویسندگان
چکیده
Hemophilia A is caused by mutations within the Factor VIII (FVIII) gene that lead to depleted protein production and inefficient blood clotting. Several attempts at gene therapy have failed for various reasons-including immune rejection. The recent generation of induced pluripotent stem (iPS) cells from somatic cells by the ectopic expression of 3 transcription factors, Oct4, Sox2, and Klf4, provides a means of circumventing the immune rejection barrier. To date, iPS cells appear to be indistinguishable from ES cells and thus provide tremendous therapeutic potential. Here we prepared murine iPS cells from tail-tip fibroblasts and differentiated them to both endothelial cells and endothelial progenitor cells by using the embryoid body differentiation method. These iPS cells express major ES cell markers such as Oct4, Nanog, SSEA-1, alkaline phosphatase, and SALL4. Endothelial/endothelial progenitor cells derived from iPS cells expressed cell-specific markers such as CD31, CD34, and Flk1 and secreted FVIII protein. These iPS-derived cells were injected directly into the liver of irradiated hemophilia A mice. At various times after transplantation (7-90 days) hemophilia A mice and their control mice counterparts were challenged by a tail-clip bleeding assay. Nontransplanted hemophilia A mice died within a few hours, whereas transplanted mice survived for more than 3 months. Plasma FVIII levels increased in transplanted hemophilia A mice during this period to 8% to 12% of wild type and corrected the hemophilia A phenotype. Our studies provide additional evidence that iPS cell therapy may be able to treat human monogenetic disorders in the future.
منابع مشابه
Sustained phenotypic correction of murine hemophilia A by in vivo gene therapy.
Hemophilia A is caused by a deficiency of blood coagulation factor VIII (FVIII) and has been widely discussed as a candidate for gene therapy. While the natural canine model of hemophilia A has been valuable for the development of FVIII pharmaceutical products, the use of hemophiliac dogs for gene therapy studies has several limitations such as expense and the long canine generation time. The r...
متن کاملHyperactive sleeping beauty transposase enables persistent phenotypic correction in mice and a canine model for hemophilia B.
Sleeping Beauty (SB) transposase enables somatic integration of exogenous DNA in mammalian cells, but potency as a gene transfer vector especially in large mammals has been lacking. Herein, we show that hyperactive transposase system delivered by high-capacity adenoviral vectors (HC-AdVs) can result in somatic integration of a canine factor IX (cFIX) expression-cassette in canine liver, facilit...
متن کاملGene Expression under F8 Promoter Driving In Mouse Hepatoma Cells: A Step towards Gene Therapy of Hemophilia
Background and Objectives: Significant progress has been made in treatment of hemophilia. Ex-vivo gene therapy is going popular due to the capability of this method in using isogenic cells for genetic manipulation and reintroducing them into same host after proliferation. Most gene therapy techniques use viral vectors, which usually harbor a strong and non-specific promoter (e...
متن کاملpiggyBac-mediated phenotypic correction of factor VIII deficiency
Hemophilia A, caused by a deficiency in factor VIII (FVIII), is the most severe inherited bleeding disorder. Hemophilia A is an attractive gene therapy candidate because even small increases in FVIII levels will positively alter the phenotype. While several vectors are under investigation, gene addition from an integrated transgene offers the possibility of long term expression. We engineered t...
متن کاملPhenotypic correction and stable expression of factor VIII in hemophilia A mice by embryonic stem cell therapy.
Hereditary deficiency of factor VIII (FVIII) leads to hemophilia A, a severe X-linked bleeding disorder. Current therapies include fixed-dose FVIII prophylaxis, factor replacement therapy, and most recently, gene therapy. Prophylaxis and FVIII replacement therapies are limited by incomplete efficacy, high cost, restricted availability, and development of neutralizing antibodies in chronically t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 106 3 شماره
صفحات -
تاریخ انتشار 2009